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Particle density stratification in transient sedimentation

S. L. Dancé and M. R. Maxey
Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA
(Received 16 March 2003; published 10 September 2003

Theoretical predictions for the scaling of particle velocity fluctuations with container size in homogeneous
Stokes suspensions are not consistent with experimental observations. Several explanations have been ad-
vanced, including the formation of stratification in bounded systems, such as those used in experiments.
Numerical simulations of transient Stokes sedimentation in bounded cells are presented here for several cell
sizes. The simulated cells have top and bottom wall boundaries and periodic boundaries in the horizontal.
Throughout the course of the simulations the number and distribution of particles in the cell evolve, with
impacts on the bulk mean particle velocity, velocity fluctuations, and particle density gradient. Initially the
sedimentation follows the classical description, with a sharp front and uniform particle concentration below,
but this is not sustained. A layer of higher particle concentration develops below the front. This is unstable and
there is a large-scale overturning of the fluid. As a consequence, there is a redistribution of the particles,
leaving behind a mass loading of the particles, which is stably stratsigject to small density fluctuations
between horizontal levelsThe mean velocity and fluctuations of the particles initially grow and then decay
once stable stratification has developed.
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I. INTRODUCTION themselves locally in configurations that exactly cancel the
divergence in the fluctuations. This leads to a correlation
In Stokes flow, an isolated sphere falls steadily through dength inconsistent with the findings of Segreal. Nonlin-
suspending liquid, at a terminal velocity determined by aear advection-diffusion mechanisri$0,11] have been put
balance between the weight of the particle and the drag on iforward, which rely on assumptions about the form of the
In a suspension of many particles, the velocity of each pargiffusivity. Brenner’s work on side wall§12] showed that
ticle is determined by the instantaneous configuration of itshey mollify but do not eliminate the divergence in fluctua-
neighbors. For example, isolated clusters of particles settldons with container size. LaddL3] carried out simulations
more rapidly, whereas on average there is a hindered settling cells bounded by walls on all sides, and found that fluc-
effect. Such interactions cause fluctuations in particle veloctuation levels did indeed saturate for sufficiently wide cells.
ity, which lead to dispersion of the particles, in addition to alLuke [14] showed that the presence of a stable concentration
net sedimentation flow. The scaling of these fluctuations igradient in a suspension will act to damp out particle density
Stokes sedimentation has been a source of controviensg  fluctuations, and hence velocity fluctuations. Recently, these
review see Ramaswanyl]). Theoretical work[2] gave a ideas have been developed furtfigs].
scaling of the particle velocity fluctuations that increased The evolution of the particle density distribution in a
with the size of the sedimentation vessel. This was supporteghonodisperse suspension is described by a classical theory
by results from numerical simulations with fully periodic [16]. In this theory, a dense layer of particles forms at the
boundary condition§3,4]. However, the theory proved to be bottom of the cell with a smooth transition to a layer of
inconsistent with experimental datdor example, Refs. uniform density above. The density of this uniform layer is
[5-8]). According to Segret al.[7,8] the fluctuation levels matched to the initial value. Located above this is the sedi-
saturate for cells larger than a certain correlation lengthmentation front that can either be a sharp front under a layer
which scales as-a¢~ 3 (Herea is the particle radius and of nearly zero void fraction or a diffuse front where the den-
¢ is the volume fraction.For smaller cells, the fluctuations sity gradient spans a significant portion of the cell. The be-
exhibit a linear dependence on cell size. havior of the front is determined according to the Peclet
The theoretical scaling of the velocity fluctuations is de-number(defined as the ratio of hydrodynamic to Brownian
rived from an idealized model that differs from experimentaldiffusivity). In the high Peclet number limit, where Brownian
systems in a number of respects. The challenge is to identifynotion is negligible, the front is expected to be sharp: the
the dominant physical mechanism that should be includedheory predicts diffuse fronts for smaller Peclet numbers,
Several authors have examined the assumptions of the theomhich might occur if the suspension is polydisperse. There
and proposed physical mechanisms to explain the differencesre only limited experimental measurements of the evolution
between theory and experiment. Koch and Sha@@dfton-  of the particle density profile availablgl7-19 and very
sidered a Debye-like screening, where the particles arranditle work has considered density profiles from simulations
[13,15.
The purpose of this work is to carry out numerical simu-
*Present address: Department of Meteorology, University oflations to determine whether stable stratification will develop
Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, UK; elecin a sedimentation cell and to consider the impact of such a
tronic address: s.l.dance@reading.ac.uk stably stratified particle concentration on the particle velocity
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distribution. All particles in the simulations are identical these calculations, see Reff0,21. The force-monopole
rigid spheres. Fluid inertia, particle inertia, and BrownianstrengthF(" is equal to the hydrodynamic drag on thth
motion are neglected. The computational domain is wallparticle. Typically, this is equal to the buoyancy adjusted
bounded in the vertical and has periodic boundary conditionsveight of the particle, minus the particle inertia:

in the horizontal. The results show that a concentration gra-

dient does eventually form, independent of container width, F)— B _ dv(™

following convective overturning within the cell. It is hoped =(Mp=mo)| 9= —5;

that these surprising results will stimulate further experimen-

tal studies. In this work particle inertia is neglected. This is appropriate

The paper is organized as follows. In Sec. Il the simulafor sedimenting suspensions where the effect of gravitational
tion methods, parameters for the numerical experiments anacceleration is much larger than accelerations in the fluid.
statistics calculated in processing the data are described. Re- Dipole termsGi(j”) are not included for now so as to make
sults are presented in Sec. Ill. These include time series afomputations feasible in reasonable time for large numbers
volume fraction profiles and bulk statistics for particle ve-of particles. Estimating the degree of error introduced is dis-
locities. Profiles of vertical particle velocity and local density cussed in Sec. IV. In the context of the present problem, there
fluctuations are also considered. A qualitative explanation ofre quantitative but not qualitative differences. For details of
the results in terms of particle cluster dynamics is given. Thehe calculation of this term, the reader is referred to Dance
effects of neglecting force-coupling methgdCM)-force-  and Maxey[23] and Lomholt and Maxey21].
dipole terms in the simulations are considered in Sec. IV. We Initial positions for each particle are prescribed via a ran-
summarize the results and conclude in Sec. V. dom seeding. Particle positions then evolve as

II. SIMULATION METHODS AND PARAMETERS in(n)

=v{", (6)
A. The force coupling method

Simulations are carried out using the FCM. In this sectionThe particle velocities are computed as a local average of the
a brief overview of the method is given. For further details,fluid velocity:
the reader is referred to the descriptions in REZ§~22.

The whole domain, including the particles, is treated as
fluid. The fluid velocity fieldu(x,t) and pressur@(x,t) sat-
isfy the Stokes equations:

vil(t)= f Ui () A=Y M (t))d3x. 7

With this definition for the velocity, there is a consistent

—uV2u+Vp=f, (1) balance between the rate of work done by the particulate
phase and viscous dissipation of kinetic energy by the fluid
V.u=0, (2  [20].

) o _ ) _ Further details and extensions of the model are docu-

mentum equatiofil) is augmented with a source tef(x,t),  flows in a number of geometries, including suspension flows
which approximates the effect of the particles on the flow, 24,

using the FCM-multipole terms:
B. Numerical solution of the FCM equations

N 90

fix,t)= > Fi(n)A(X_Y(n)(t))+Gi(jn)K(X_Y(n)(t))- The FCM equations are solved in a domain with wall
n=t ! 3) (no-slip boundaries in the vertical and periodic boundaries

in the horizontal. A mixed Fourier/spectral element discreti-

The sum is over all the particles in the system, ike par- zation is u_sed With_the l_Jzawa alg(_)rithm to _solve for the flow.
ticle being located a¥(™(t). The functionsA(x) and ®(x) Th.e code is described in Appendix A. Particles are advec_ted
are spherically symmetric Gaussian functions: using a third-order Adams-Bashforth scheme. A repulsive
potential force barrier is imposed for interparticle and

1 —x2 particle-wall collisions. The form of this force and its effects
A(X)= 5 3/2exp< 5 ) , (4)  on the bulk flow and microstructure are discussed in another
(2moy) 203 paper{25].
1 —x2 C. Experimental parameters
p p
O(x)= 5 EX > | ) . . . .
(2mag)®? 206 Several different size sedimentation cells are used for

comparison. The heighi=50a or 10(. The widthL varies
where o, and oy are length scales related to the particlebetween 18 and 8@. The flow is randomly seeded with
radiusa. Their values are calculated by matching FCM par-particles as the initial conditions and the initial volume frac-
ticle velocities to those obtained with exact solutions. Thistion is fixed at 11.6%. The number of particles in the cell is
results inoy=alw? and o¢=a/(36m)Y5. For details of denoted byN. The particles are all identical spheres, with

031403-2



PARTICLE DENSITY STRATIFICATION IN . .. PHYSICAL REVIEW E68, 031403 (2003

y > TABLE I. Simulation parameters.
- - .
[ ]
z T, N L/a H/a Resolution
[}
X e o .o Parameter sehA 313 15.0 50.0 108 24X 24
e 0 Parameter seB 1250 30.0 50.0 10048x 48
e o Parameter seC 5000 60.0 50.0 108 96X 96
o Qe Parameter sed 8889 80.0 50.0 100128x128
Parameter sdt 10000 60.0 100.0 19996X 96
g % o
[ J [} . . Ly .
whereNg is the number of particles within the bulk region at
time t.

The Dirichlet boundaries at the top and bottom of the
sedimentation cell introduce vertical inhomogeneity in the
flow. However, each horizontal plane is assumed to be sta-

FIG. 1. The geometry for the suspension simulations. tistically homogeneous, thus it makes sense to consider hori-
zontally averaged statistics. The vertical profile of the local
radiia=1.0. An illustration of the geometry is given in Fig. volume fraction is defined as
1 and the parameters for each box size are given in Table I.

The force on each particle is set as @a, corresponding - 1 N
to a Stokes settling velocity of 1.0 in an infinite fluid. This d(X,t)= EJ nz,l QAX=Y™(1)dydz (10
sets the Stokes time scale in the domay a/Vs=1.0. In

this geometry, the velocity of a single particle actually variesyhere the sum is over tHe particles in the domain at time

with height in the box, with a maximum value at the mid- and () is the volume of a particleA is the particle distri-

plane, due to the no-slip conditions on the particle walls. Theyytion envelope, defined in Eq4). The integral is taken

value also depends on the width of the box, due to the perigyer the whole horizontal plane.

odic boundary conditions in the horizontal. Horizontally averaged profiles of vertical particle velocity
As the particles reach the bottom of the box, they areyre defined as

removed. Whilst this does not reproduce experimental con-

ditions exactly, it allows the simplifying assumption of a 1 N
fixed length scaléd for the effective height of the cell, and is —Zf Z VWA (x=Y " (t))dydz
computationally convenient. This is discussed further in V(x,t) = L") n=t (11)
Sec. V. ’ & '

D. Statistics where the sum is over the particles in the domain at tinte

A bulk regionB of the domain is defined asOy,z<L,
and 1G=x=<40 or 16=x=90, for H=50 or 100, respec-
tively. The choice of the bulk region of flow corresponds to In Fig. 2@ time series of the volume fraction profile

the region Wher(_e the velocity of a smglg particle falling &(x,1) [defined in Eq(10)] is illustrated for parameter sEt
through the box is at least 95% of its maximum value. Theitially the seeding of particles is uniformly distributed in
reader may find it useful to think of the bulk flow region as the pulk region with a particle depleted layer next to the top
that where the influence of the no-slip condition on the topsng hottom walls, since the particles may not overlap with

and bottom walls is less significant. ~ the walls. The small fluctuations between horizontal levels
An overbar denotes a spatial average over the bulk regioge g consequence of the random seeding. At first, the vol-

IIl. RESULTS

of a continuous functiong(x,t): ume fraction profile evolves according to the classical theory,
1 with a dense layer forming at the bottom of the cell with a

E(t): _J' g(x,t)dx, (8) smooth transition to a layer of uniform density above, which

Ogle is matched to the initial value. Located above this is a rela-

tively sharp sedimentation front. However, whefftg
where(Q; is the volume of the bulk region. =30-40 a dense layer develops, just below the sedimenta-
For some particle attributes, such g, say, it is more tion front, that has a much higher particle volume fraction
appropriate to calculate the mean over all the particles lothan the fluid immediately below it. This is unstable and
cated within the bulk region, this is denoted with anglethere is alarge scale overturning of the fluid which leads to a
brackets: redistribution of the particles. By/ts=50 this leaves behind
it a stably stratified mass loading of the particles, subject to
small statistical fluctuations in density between horizontal
g™ 9) levels. The formation of locally dense layers or overhangs

Ng(t) ny™epy occurs again, but not as strongly, later in the simulation,

(9(1))=
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FIG. 2. Atime series of the vertical profiles of the local volume  FIG. 3. Atime series of the vertical profiles of the local volume
fraction ¢ for parameter sek. fraction ¢ for parameter set.

lower down in the cell. The number of particles is largeis compensated for by a slightly larger number density of
enough that statistical fluctuations in the density are smalparticles in the bulk of the fluid. As a result, the initial vol-
compared with the excess density in these overhangs. Thigme fraction in the bulk region is slightly higher than the
suggests that convective overturning can develop, even if thiitial volume fraction for the whole cell. For parameter sets
initial density is uniform. A B, C, andD, after 10@s there are very few particles left in
In Fig. 3 an example of a time series of the density profile the bulk region. For parameter $et(the tall cel), there are
B(x,1), is shown forC (whose cell height is half that d). slightly less than half of the initial _nur_nb_er qf particles left in
Early on a similar overturning event occurs in the cell. Somehe System. Furthermores o for E is similar in value togso
particles recirculate and temporarily stick to the containefor C. The difference in volume fraction betweéhand E
lid. There is some evidence that this also occurs in othe@fter 10@s might be explained as follows. The mean settling
independent simulations, e.g., Fig. 9 of Réf]. In the bulk velocities in each case are similaee Fig. 5 andl a;sociated
region, a particle density concentration gradient soon devef€marks below so particle flux rates are also similar. Thus,
ops, with a dense layer of particles just above the botton€ll E, which is twice as tall as celC, contains twice as
wall. The gradient may be quantified by calculating the linemany particles as cell at initial time, and therefore takes
of best fit in the bulk region. Using this measure, the largesRPProximately twice as long for all the particles to settle out.
gradient occurs between 20and 3@s. Subsequently, the ndeed, if time is scaled byi/Vs, the evolution of bulk
gradient decreases, but the stable stratification persists ¥8lume fraction in case€ andE is approximately the same.
particles settle out of the system and the bulk volume frac- The bulk mean particle velocityV(t)), is defined as the
tion decreases. average over all the particles within the bulk reg[see Eq.
The volume fraction profile evolves in a similar way for (9)]- A plot of (V(t)) is given in Fig. 5. Each symbol repre-
each set of parameters with the same cell he|ahB(C,D) sents a time average Overt},O and an average over several
An illustration comparing a snapshot of the profile for eachrealizations in the case of parameter sendB. The error
set of parameters is given in Fig. 4. The solid lines represerﬁars represent the statistical error as the standard deviation of
the function &(X,ZQS) for one realization. The wider cell the mean[26], and thus take into account the number of

sizes show less statistical variation from horizontal level toparEt'Ck;S |ntez?cr_1 CaIICtL."at'O”' ¢ . imilar bulk
horizontal level, since there are a larger number of particles ach Set of simufation parameters gives simitar bulk mean

in the system. The dashed lines are lines of best fit to the daféeloc't'es as a function of time. There does not appear to be

in the bulk region. The gradient @b with respect tox cor- a systemgtic depe;ndence of the mean velocity on the box

responding to this line are, for each ca&@).0004,8 0.0012 size, consistent with theoretical expectations. The spread of

C 0.0024.D 0.0018 ' ' o " the data is comparable to the typical uncertainty reported in
During’ the course of each simulation, the number of par_experiments(e.g., Nicolaiet al. [27] have an uncertainty of

ticles in the bulk regior{defined in Sec. Il D decreases as +0.1 for Fhe nondimensional mean vertical velocity at vol-
the particles settle out of the system. The initiglyf and ume fract|_ons of 0.05_and 0.1 . L

final (¢199 volume fractions in the bulk region are given in According to the Richardson-Zaki empirical |4&8],

Table 1l. The initial distribution of particles is uniform (V)=Vg(1— )",

throughout the box, with the caveat that they do not overlap

with each other or the container walls. Thus there is a parwith an exponent of 5, the expected initial bulk mean particle
ticle depleted layer next to the top and bottom walls, whichvertical velocity is 0.5¥g, corresponding tap,=0.12. As
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the number of particles in the bulk region decreased, Wety fluctuations on container size. Fort2&t<30ts, cell A
would expect a steady increase in velocity, culminating Withexhipits the largest relative fluctuations. Comparing with Fig.
0.95/s at t=100ts and a nominal volume fraction of 0.01. 4 we see that celh also has the largest density variations
For each simulation an initial velocity of a similar size to the petween horizontal levels at this time. A number of factors
Richardson-Zaki prediction is indeed observed. RoB, C,  may be relevant here.

and D the mean velocities increase during the period O (1) The narrow cell has fewer particles in any horizontal
<t/ts=40, and the cells are ordered by bulk mean velocityjayer, thus individual particles or particle clusters may have
magnitude a®\<B<C~D. This period of gradual increase more effect.

is followed by a jump in vertical velocity. After this event,  (2) The periodic boundary conditions mean that any up or

the ordering of the cells by magnitude of bulk mean velocitygown flow must fit within this length scale. Fewer swirls or
is reversedD<C<B<A. The peak in bulk mean settling

velocity is later for E. Subsequently, the mean velocities de- ! - - - - - - - - -
crease, even though the volume fraction in the domain is
decreasing. Similarly, Guazzelli’'s experimental d&8) also 0.8 % 1
]
3

show an initial increase followed by a decrease in the mear
settling velocity.

In Fig. 6 the bulk rms vertical velocity fluctuations are
plotted. Each symbol represents a time average oveyail

0.8

»

B HEH e
L]
B v e
-
3]

an average over several realization for experiménasdB. Z 06l > ]
Surprisingly, there is no systematic dependence of the veloc? g ® & x &
.1
0.5 ‘ q
TABLE II. Bulk region volume fraction statistics at=0 andt s B 8 >
=100Qg. 04 © ) 1
&
$o $100 0.3 $ 1
Parameter seA 0.124 0.006 02 . ) . s ) . . . .
0 10 20 30 40 50 60 70 80 90 100
Parameter se 0.120 0.006 g
Parameter set 0.120 0.006
Parameter sdb 0.120 0.004 FIG. 5. Bulk mean settling velocity vs time. Symbols;, pa-
Parameter seff 0.119 0.049 rameter seh; (1, parameter seB; ¢, parameter set; A, param-

eter seD; >, parameter sef.
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FIG. 6. Bulk mean vertical velocity fluctuations vs time. Sym-  FIG. 7. Temporally averaged particle vertical velocity profiles
bols: O, parameter seh; (1, parameter seB; ¢, parameter set; V(x,t) for parameter se€, corresponding to times 9t<10tg,
A, parameter seD; >, parameter seE. 20ts<t=<30tg, 40s<t<5bltg, 60s<t<70g, and 8hs=<t
<90tg.

eddies driven by local particle clustering can fit between the

cell boundaries. uniform in the bulk region, with a decay at the walls due to

(8) Periodicity on this short scale may introduce Ior]gthe boundary conditions. At early times, the flow adjusts to

range correlations. o .
For each simulation, the relative magnitude of the VeIOC_the distribution of particles. Towards the top of the box, the

ity fluctuations grows initially and then decay#n increase ::?)trlnjé?r;:ﬁ\tlvsc\;\];e“equsldsgmjeseirkt)% |ter;euco\,c;ﬁ;\5/ag\c;nﬂ?; \;Icgijmt?e-
towards the end of the time period, evident for experiments P P b j

D andE is probably a statistical artifact, since the number OfSOQﬁsbiggnqzsd'ot?i?ivrge#?]ep?,r;ggn\go;g ;)n ?ggrl];et:allel
particles remaining in the bulk region is very small at this 9 p ' PP y

time) A time decay of fluctuation levels is predicted by uniform in the bulk region of flow, with the velocities higher

Luke’s theory[14]. This is also seen in some numerical near the front.

simulationg 13] and experiments of Ref19,29. In experi- . Cqmpanng Fig. 5 W!th Fig. 7 itis evident that the large
ments with thick cell§19], the decay continues up to the jump in bulk mean vertical velocity corresponds to a change

termination of data collection (1069or longey. In thinner in profile character. To start with, the horizontally averaged

cells, after an initial transient, the fluctuations decay to a
uniform value. 0

The temporal decrease in velocity fluctuations is perhaps
surprising if we consider the fluctuations as a function of
volume fraction. In this system the volume fraction decreases 20
with time as particles settle out of the cell. Thus an increase
in fluctuation levels might be expected, based on experimen:
tal evidence for homogeneous systems. For example, resull 40
for a steady state fluidized bd@®0] show an increase in s
fluctuation levels with decrease ih.

In order to help understand these phenomena, conside 89
profiles of vertical particle velocity, defined by E(l1). A
series of these profiles is plotted for parameteiGet Fig. 7
and parameter sdf in Fig. 8. Each profile plotted is aver- 8or ]
aged over a period of 1§. The zero line for each profile is
offset by an integer, for clarity. The profiles are constructed
from particle data, which is distributed onto the computa- 190, y > 3 4 5
tional grid using a Gaussian envelope. The profiles do not gc O(X,t)/vs
exactly to zero at the upper and lower walls if there is a
particle (or particles near the walls with a nonzero velocity. FIG. 8. Temporally averaged particle vertical velocity profiles
This happens most often at the bottom wall where there is &(x,t) for parameter seE, corresponding to times 9t<10tg,
weight of particles pressing down from above. 20ts<t<30tg, 40sst<5b0g, 60g<t<70tg, and 8hsst

At first, the horizontally averaged particle velocities are<90ts.
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particle velocity was upward at some levels, and then there isumber fluctuations decreased. These results are qualita-
a transition to a situation in which the horizontally averagedtvely similar to those from the simulations presented here.
particle velocities are all downwards. In other words, the This motivates the following tentative explanation of the
initial increase in the bulk mean velocity corresponds to aresults. Initially, the particles are uniformly distributed. Over
reorganization of the flow and particle redistribution. Subse-a short initial period, the flow organizes, resulting in a new
quently, the bulk mean velocity decreases. This is attributegharticle distribution. In particular, the Stokes flow structure
to an increase in particle number density below the bulkencourages the formation of long-lived particle clusters.
region, which creates a blockage effect, and slows the paffhese experience less hydrodynamic drag than individual
ticles down. The large velocity gradient evident in the pro-particles, and so sediment faster. The presence of many of
files towards the bottom of the box supports this conclusionthese clusters leads to an increase in the bulk mean settling
The local particle distribution is now considered, using avelocity. Analogously, such local density fluctuations in-
simple box-counting technique. The domain is divided intocrease the velocity fluctuations in the bulk flow. As clusters
small cubes of sidel and the number of particles in each approach the bottom wall, the return flow acts to slow them
cube, 7, is counted. The probability density functigp.d.f) down. The subsequent build up of particles arriving from
of the number of particles in each cube at a given ttman  above creates a more dense layer. This hindered settling, in
then be calculated. An example of time series for the bulkurn, feeds back into higher sections of the cell. Hence a bulk
region of flow withd=5.0, for parameter se, is given in  stable stratification is created. There is also an associated
Fig. 9. The p.d.f. including the whole sedimentation cell isdecay of the bulk mean velocity. Gradually, the particles
similar. Also, the p.d.f.s calculated with=4.0,6.0 have the settle out of the system. Particle clusters selectively settle out
same features. At=0 the p.d.f. corresponds to a uniform faster than the mean, leaving behind a more dispersed distri-
distribution of particles. Subsequently, the mean shifts to thdution of particles. The growth in fluctuation levels contin-
left as fast moving clusters sediment out of the system. Aties for aboutH/2Vg, the time scale for density fluctuations
the same time, the tail of the distribution becomes shorterto convect through half of the box. The subsequent decay in
indicating the particle number fluctuations per box are defluctuation levels is due to the increased mean interparticle
creasing. The particles become more dispersed and the dispacing in the remaining particles. The bulk volume fraction
tribution can no longer be considered uniform. (¢) decreases as the number of particles in the system is
There are no experimental results available for the evolureduced. Consequently, the hindered settling phenomenon is
tion of the three-dimensional distribution of particles. How- less pronounced, allowing the concentration gradient
ever, the p.d.f. of the two-dimensional particle distribution(d¢/dx) to relax.
has been measur¢dl], by counting the number of particles

ir) atestcircle in illuminatgd r_egi(_)ns of the flow, far from thg IV. DIPOLE EFFECTS
side walls. The particle distribution evolved over time. Ini-
tially the distribution was Poissofcorresponding to uni- Cichocki et al. [32] carried out study of convergence of

formly distributed particlels but at later times, the particle solutions for wall-bounded flow with multipole truncation
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TABLE lll. Parameters for the FCM-force-dipole test. of a dipole term would make a small quantitative difference
to the results, but a qualitative change is not anticipated.
N, number of particles 1250
L/a, nondimensional width 30.0
H/a, nondimensional height 50.0 V. SUMMARY AND CONCLUSIONS
i - X 48X . . .
ansqgﬁjttﬁ%rfg FCM-monopole 100x48x 48 Transient settling through a cell with top and bottom walls
Resolution for FCM-monopole 199X 96X 96 and periodic boundary conditions in the horizontal has been

considered. Throughout the course of the simulations the
number and distribution of particles in the cell evolved, with
impacts on the bulk mean particle velocity, velocity fluctua-
tions, and particle density gradient. Initially the sedimenta-
order for a classical multipole method. They found that thetion followed the classical description, with a sharp front and
truncation order should be at least 2 and that there was aniform particle concentration below, but this was not sus-
further improvement by using three terms, including addi-tained. A layer of higher particle concentration developed
tional terms seemed unnecessary. In this work, only onéelow the front. This was unstable and there was a large-
FCM-multipole term, the monopole, is employed. The use ofscale overturning of the fluid. As a consequence, there was a
the FCM-force dipole gives a chiefly local effect, which is redistribution of the particles, leaving behind a mass loading
most apparent for particles in shear flg®1,23. For in-  of the particles that was stably stratifiégdubject to small
stance, the force dipole term prevents particle deformationlensity fluctuations between horizontal leyelShe forma-
during the close approach of another sphere. tion of locally dense layers or overhangs occurred again, but
The particle velocities computed with and without the di- not as strongly, later in the simulation, lower down in the
pole term for a system with parameters given in Table Ill arecell. The mean particle velocity and fluctuations were not
compared. Note that computations using the dipole term reconstant in time, but grew whilst the flow became organized
quire a higher resolution grid. The tests were carried out byand then decayed for the rest of the experiment. The forma-
creating five randomly seeded arrangements of particleson and differential settling of particle clusters appeared to
within the sedimentation cell and then comparing the particlde the key to understanding these phenomena.
velocities computed using each method. In this light, we may reconsider the role of walls in
The results indicated that there are small quantitative difscreening velocity fluctuations in suspensions. The presence
ferences for the velocities of individual particles. Figure 100f a bottom wall enables large positive density fluctuations
shows the vertical velocity distribution for each method: Fig.(particle clustersto settle out, i.e., the wall acts as a sink for
10(a) shows the computed velocity distribution using only fluctuations. In simulations with periodic boundary condi-
the monopole term and Fig. ) shows the distribution in- tions, these inhomogeneities are reintroduced at the top as
cluding the dipole. Using only the monopole term the distri-they leave the bottom of the cell. Thus periodic boundaries
bution has mean 0.45 and standard deviation 0.52. The diprevent the particle distribution from evolving as it would in
tribution calculated using the dipole term has mean 0.40 andn experiment.
standard deviation 0.39. Thus the p.d.f.s indicate that the use The data obtained in experiments, such as those of Segre

and dipole computations

(a) (b)

0.12f b

p(V)
p(V)

FIG. 10. P.d.f.s of the vertical velocities using
one or two FCM-multipole terms.

V (monopole) V(dipole)
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et al. and Nicolaiet al., are typically taken some time after ticles, it may still be the case that there are some statistical
the cessation of mechanical mixing and the onset of settlingjuctuations in the data. We do not, however, believe that the
in order to allow the transient effects of mixing to die away. trends in the data would be changed significantly by increas-
The simulation results would seem to indicate that in thising the size of the ensemble of experiments.

transient period, the distribution of particles evolves, via dif-

ferential settling of clusters, to a modified microstructure ACKNOWLEDGMENTS

where the mean interparticle spacing is less than that would The authors are grateful to P. N. SegNASA Marshall

be expected for a uniform distribution of particles. WhatSpace Flight Centgrand G. E. KarniadakiéSrown Univer-
would appear to be needed now is careful experimental me%‘ity) for useful discussion.s énd comments. The work was
surements of the evolution of the microstructure. Unfortu'supported by DARPA-ATO. Computations Were carried out

”at?'y' 't. IS very d'ff'.CU|t to.measure the local particle distri- at TCASCYV, Brown University and Boston University’s SCF.
bution in three dimensions, although perhaps further

measurements in two dimensions, such as those oét ai.
[31], would provide insight.

A systematic dependence of particle velocity fluctuations e wish to solve the Stokes equations
on the box width was not observed. An explanatory hypoth-

APPENDIX: CODE DESCRIPTION

esis is that the side walls may have a role to play in changing —uV?u+Vp=f, (AL)
the particle distribution. Typically, experimental dd&-8]
is taken in the center of the cell, where the shortest distance -V-u=0, (A2)

from a side wall is larger than &0 Thus, one might assume
that side wall effects should be negligible. However, the flowfor velocity u=(u,v,w) and pressur@ in a domain (Q.,)
around particles close to the wall is modified relative to theX (0.Ly) X (0,L;), subject to homogeneous Dirichlého-
flow around particles in the bulk of the céll2]. Geometrical ~ slip) conditions on the channel walls,

constraints imply that close to the walls there is a particle-

depleted layer. Thus the side walls introduce horizontal in- u(0y,z)=u(Ly,y,2)=0,

homogeneities into the system, which are not present in thes
simulations. Such inhomogeneities may drive secondar
flows, e.g., intrinsic convectiof83]. It would be interesting _

to consider the results of simulations with side, top, and bot- u(x,02)=u(x.Ly.2) V(x2)e(0L)x(OL,),
tom walls, and examine the statistics of local particle density
fluctuations across the width of the cell.

During the simulations, particles were removed from thea mixed Fourier spectral element method is used to solve for
bottom of the container. In experiments, particles are alloweghe flow., A comprehensive introduction to spectral element
to settle and form a sediment layer on the bottom of the Cellmethods as applied to computational fluid dynamics is given
The weight of descending particles makes refluidization ok Karniadakis and Sherwif8s].
the sediment layer energetically unfavoralfléiscous resus- Since the geometry is periodic in the wall-parallel direc-

pension is more likely in the context of shear flg84].)  tions, the velocity, pressure, and forcing may be written in

tively moving the bottom boundary condition upwards. In

our simulations, the initial volume fraction was 11.6%, thus - .

allowing the particles to remain in the cell might result in a u(x,y,z)=; u(x,k,|)e'Ayky* Aatz),

total reduction in cell height of about 15—-20 % by the end of '

the experiment. Using the time scales from our simulations,

the average rate of growth of the sediment layer would be p(X,y,Z):E E,(X’k,nei(ﬁykwﬁzln’

about 0.07¥5. As noted in Sec. Il, the removal of particles kil

allows the simplifying assumption of a fixed effective height,

as well as being computationally convenient. Particle re- _N 3 i(Byky+ B,12)

moval will affect the dynamics, but it is not anticipated that f(x.y.2) %‘ focki et '

this effect will be major. However, our results should be

viewed in the context of the simulations actually made. where 8,=2x/L, and 8,=2m/L,. For simplicity of nota-
The FCM model formulation utilized only the first-order tion, we restrict the rest of this description to the case where

accurate FCM-multipole term. However, the model doed ,=L, and write 3= g,=,. The algorithm is easily gen-

generalize to higher-order multipoles. The use of highereralized to the case df,#L,, as indeed it is in the code.

order terms is not expected to affect the results in a qualita- In practice, this transformation is discretized by truncation

tive sensgsee Sec. IV, although the quantitative values of of the Fourier series. The efficient fast Fourier transform

individual particle velocities may be slightly changed in (FFT) can be used to carry out the transformation between

some cases. physical and spectral space. The Fourier series transforma-
Even though several realizations were carried out for theion reduces the Stokes equations to a series of decoupled

small size boxes, and the large boxes contained a lot of paproblems where we treat the wave numbers as parameters:

end periodic boundary conditions in tlyeandz directions:

u(x,y,0)=u(xy,L,) V(x,y)€(0L)X(0Ly).
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—u

d? . dp .
N L E )
. )\)u+dx &,

— N2 |w+iglp=1©),

—p
dx?

dﬁ+, ko+iglw|=0
ax iBkv+igBlw | =0,
with \2= B2(k?+1?).

The equivalent weak form is as follows. Find,p) in
XXM such that

ud R . d .
M &ld_(i +)\2(U,(f))]_(p,d_(f()):(f(l),qs),
v de 207 i Bk(D 2(2)
M\ ax’ dx +N (v, ) [ +iBk(p,d)=(9,¢),
M o ax +>\2(\7v,¢>)]+iBI(E>,¢)=(7“3),¢),

for all e X, and

du . .
&+|,8kv+|ﬁlw,q) =0,
for all ge M, whereX andM are chosen to be
X=H5((0L,),
M =L3((0.L)

so that the solutions are well posgg6). HereH 5((0.L,)) is

PHYSICAL REVIEW E 68, 031403 (2003

velocity and pressure, they may not be discretized indepen-
dently, to avoid spurious modes compatible subspaces must
be chosen. For a discussion of the necessary conditions of
compatibility see Canut¢38]. The domain (Q,,) is split

into K equal elements, and the following subspaces that ex-
clude parasitic modes are chosen:

Xp=H3(0L,))NPyk((0.Ly))
Mp=L3(0,L,)NPy_2x(0.L)),

wherePy_,k((0Ly)) is the space of polynomials of degree
less than or equal tdN restricted to theK elements. The
choice of bases for these spaces corresponds to a discretiza-
tion of the velocity using\ Gauss-Lobatto-Legendre points

on each element and the pressure usMg2 Gauss-
Legendre points. In this way, we are able to impose the Di-
richlet boundary conditions and preserve continuity of veloc-
ity between each element, but there are no boundary
conditions on the pressure, and it may be discontinuous from
element to element.

The Uzawa algorithm35,39 is used to solve for the flow.
The resulting matrix vector systems are solved using precon-
ditioned conjugate gradiefPCG methods. The precondi-
tioner for the pressure equation is the diagonal Gauss-
Legendre mass matrix(associated with the pressure
discretization. The PCG residual corresponds to the discrete
divergence of the velocity field; Du, and thus the specified
convergence tolerance level reflects the degree to which the
flow is incompressible. The spectrum of the preconditioned
pressure operator is analyzed by Madstyal. [39]. In our
implementation, for each given wave vectdrl(, the PCG
pressure iteration typically converges within three iterations,
as long as the spectral element resolution is high enough,
which is consistent with Madagt al. results for semiperi-
odic problems.

The solution of the velocity equations involves the inver-
sion of a Helmholtz operator. This is accomplished via PCG
iteration with the inverse of the diagonal of the Helmholtz

the space of all functions that are square integrable owperator as preconditioner. This form of preconditioner is
(0L,), whose derivatives are square integrable, and that sathosen since it is particularly easy to calculate. The condition

isfy the Dirichlet boundary conditions atx=0,,.

number of the operator varies with wave number. In particle

L',S((O,LX)) is the space of square integrable functions onsimulations, the lowest wave numbers require the most itera-

(0,L,) with zero average.

Following Rtnquist[37], these equations are discretized

tions for convergence.
Further details of the code and its validatiGincluding

using spectral elements. Due to the coupling between thspectral convergence testre given by Dancg40].
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