
PHYSICAL REVIEW E 68, 031403 ~2003!
Particle density stratification in transient sedimentation

S. L. Dance* and M. R. Maxey
Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA

~Received 16 March 2003; published 10 September 2003!

Theoretical predictions for the scaling of particle velocity fluctuations with container size in homogeneous
Stokes suspensions are not consistent with experimental observations. Several explanations have been ad-
vanced, including the formation of stratification in bounded systems, such as those used in experiments.
Numerical simulations of transient Stokes sedimentation in bounded cells are presented here for several cell
sizes. The simulated cells have top and bottom wall boundaries and periodic boundaries in the horizontal.
Throughout the course of the simulations the number and distribution of particles in the cell evolve, with
impacts on the bulk mean particle velocity, velocity fluctuations, and particle density gradient. Initially the
sedimentation follows the classical description, with a sharp front and uniform particle concentration below,
but this is not sustained. A layer of higher particle concentration develops below the front. This is unstable and
there is a large-scale overturning of the fluid. As a consequence, there is a redistribution of the particles,
leaving behind a mass loading of the particles, which is stably stratified~subject to small density fluctuations
between horizontal levels!. The mean velocity and fluctuations of the particles initially grow and then decay
once stable stratification has developed.

DOI: 10.1103/PhysRevE.68.031403 PACS number~s!: 82.70.Kj, 47.15.Gf, 83.85.Pt
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I. INTRODUCTION

In Stokes flow, an isolated sphere falls steadily throug
suspending liquid, at a terminal velocity determined by
balance between the weight of the particle and the drag o
In a suspension of many particles, the velocity of each p
ticle is determined by the instantaneous configuration of
neighbors. For example, isolated clusters of particles se
more rapidly, whereas on average there is a hindered set
effect. Such interactions cause fluctuations in particle ve
ity, which lead to dispersion of the particles, in addition to
net sedimentation flow. The scaling of these fluctuations
Stokes sedimentation has been a source of controversy~for a
review see Ramaswamy@1#!. Theoretical work@2# gave a
scaling of the particle velocity fluctuations that increas
with the size of the sedimentation vessel. This was suppo
by results from numerical simulations with fully period
boundary conditions@3,4#. However, the theory proved to b
inconsistent with experimental data~for example, Refs.
@5–8#!. According to Segre` et al. @7,8# the fluctuation levels
saturate for cells larger than a certain correlation leng
which scales as;af21/3. ~Herea is the particle radius and
f is the volume fraction.! For smaller cells, the fluctuation
exhibit a linear dependence on cell size.

The theoretical scaling of the velocity fluctuations is d
rived from an idealized model that differs from experimen
systems in a number of respects. The challenge is to iden
the dominant physical mechanism that should be includ
Several authors have examined the assumptions of the th
and proposed physical mechanisms to explain the differen
between theory and experiment. Koch and Shaqfeh@9# con-
sidered a Debye-like screening, where the particles arra
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themselves locally in configurations that exactly cancel
divergence in the fluctuations. This leads to a correlat
length inconsistent with the findings of Segre` et al. Nonlin-
ear advection-diffusion mechanisms@10,11# have been put
forward, which rely on assumptions about the form of t
diffusivity. Brenner’s work on side walls@12# showed that
they mollify but do not eliminate the divergence in fluctu
tions with container size. Ladd@13# carried out simulations
in cells bounded by walls on all sides, and found that flu
tuation levels did indeed saturate for sufficiently wide ce
Luke @14# showed that the presence of a stable concentra
gradient in a suspension will act to damp out particle den
fluctuations, and hence velocity fluctuations. Recently, th
ideas have been developed further@15#.

The evolution of the particle density distribution in
monodisperse suspension is described by a classical th
@16#. In this theory, a dense layer of particles forms at t
bottom of the cell with a smooth transition to a layer
uniform density above. The density of this uniform layer
matched to the initial value. Located above this is the se
mentation front that can either be a sharp front under a la
of nearly zero void fraction or a diffuse front where the de
sity gradient spans a significant portion of the cell. The b
havior of the front is determined according to the Pec
number~defined as the ratio of hydrodynamic to Brownia
diffusivity!. In the high Peclet number limit, where Brownia
motion is negligible, the front is expected to be sharp:
theory predicts diffuse fronts for smaller Peclet numbe
which might occur if the suspension is polydisperse. Th
are only limited experimental measurements of the evolut
of the particle density profile available@17–19# and very
little work has considered density profiles from simulatio
@13,15#.

The purpose of this work is to carry out numerical sim
lations to determine whether stable stratification will deve
in a sedimentation cell and to consider the impact of suc
stably stratified particle concentration on the particle veloc
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distribution. All particles in the simulations are identic
rigid spheres. Fluid inertia, particle inertia, and Browni
motion are neglected. The computational domain is w
bounded in the vertical and has periodic boundary conditi
in the horizontal. The results show that a concentration g
dient does eventually form, independent of container wid
following convective overturning within the cell. It is hope
that these surprising results will stimulate further experim
tal studies.

The paper is organized as follows. In Sec. II the simu
tion methods, parameters for the numerical experiments
statistics calculated in processing the data are described
sults are presented in Sec. III. These include time serie
volume fraction profiles and bulk statistics for particle v
locities. Profiles of vertical particle velocity and local dens
fluctuations are also considered. A qualitative explanation
the results in terms of particle cluster dynamics is given. T
effects of neglecting force-coupling method~FCM!-force-
dipole terms in the simulations are considered in Sec. IV.
summarize the results and conclude in Sec. V.

II. SIMULATION METHODS AND PARAMETERS

A. The force coupling method

Simulations are carried out using the FCM. In this sect
a brief overview of the method is given. For further deta
the reader is referred to the descriptions in Refs.@20–22#.

The whole domain, including the particles, is treated
fluid. The fluid velocity fieldu(x,t) and pressurep(x,t) sat-
isfy the Stokes equations:

2m¹2u1“p5f, ~1!

“•u50, ~2!

wherem is the dynamic viscosity of the fluid. The fluid mo
mentum equation~1! is augmented with a source termf(x,t),
which approximates the effect of the particles on the flo
using the FCM-multipole terms:

f i~x,t !5 (
n51

N

Fi
(n)D„xÀY(n)~ t !…1Gi j

(n) ]Q

]xj
„x2Y(n)~ t !….

~3!

The sum is over all the particles in the system, thenth par-
ticle being located atY(n)(t). The functionsD(x) andQ(x)
are spherically symmetric Gaussian functions:

D~x!5
1

~2psD
2 !3/2

expS 2x2

2sD,n
2 D , ~4!

Q~x!5
1

~2psQ
2 !3/2

expS 2x2

2sQ,n
2 D , ~5!

where sD and sQ are length scales related to the partic
radiusa. Their values are calculated by matching FCM p
ticle velocities to those obtained with exact solutions. T
results insD5a/p1/2 and sQ5a/(36p)1/6. For details of
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these calculations, see Refs.@20,21#. The force-monopole
strengthF(n) is equal to the hydrodynamic drag on thenth
particle. Typically, this is equal to the buoyancy adjust
weight of the particle, minus the particle inertia:

F(n)5~mp2mf !S g2
dV(n)

dt D .

In this work particle inertia is neglected. This is appropria
for sedimenting suspensions where the effect of gravitatio
acceleration is much larger than accelerations in the fluid

Dipole termsGi j
(n) are not included for now so as to mak

computations feasible in reasonable time for large numb
of particles. Estimating the degree of error introduced is d
cussed in Sec. IV. In the context of the present problem, th
are quantitative but not qualitative differences. For details
the calculation of this term, the reader is referred to Dan
and Maxey@23# and Lomholt and Maxey@21#.

Initial positions for each particle are prescribed via a ra
dom seeding. Particle positions then evolve as

dYi
(n)

dt
5Vi

(n) . ~6!

The particle velocities are computed as a local average of
fluid velocity:

Vi
(n)~ t !5E ui~x,t !D„xÀY(n)~ t !…d3x. ~7!

With this definition for the velocity, there is a consiste
balance between the rate of work done by the particu
phase and viscous dissipation of kinetic energy by the fl
@20#.

Further details and extensions of the model are do
mented @21,22#. The model has been used for particula
flows in a number of geometries, including suspension flo
@24#.

B. Numerical solution of the FCM equations

The FCM equations are solved in a domain with w
~no-slip! boundaries in the vertical and periodic boundar
in the horizontal. A mixed Fourier/spectral element discre
zation is used with the Uzawa algorithm to solve for the flo
The code is described in Appendix A. Particles are advec
using a third-order Adams-Bashforth scheme. A repuls
potential force barrier is imposed for interparticle a
particle-wall collisions. The form of this force and its effec
on the bulk flow and microstructure are discussed in ano
paper@25#.

C. Experimental parameters

Several different size sedimentation cells are used
comparison. The heightH550a or 100a. The widthL varies
between 15a and 80a. The flow is randomly seeded with
particles as the initial conditions and the initial volume fra
tion is fixed at 11.6%. The number of particles in the cell
denoted byN. The particles are all identical spheres, wi
3-2
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PARTICLE DENSITY STRATIFICATION IN . . . PHYSICAL REVIEW E68, 031403 ~2003!
radii a51.0. An illustration of the geometry is given in Fig
1 and the parameters for each box size are given in Tab

The force on each particle is set as 6pma, corresponding
to a Stokes settling velocity of 1.0 in an infinite fluid. Th
sets the Stokes time scale in the domain,tS5a/VS51.0. In
this geometry, the velocity of a single particle actually var
with height in the box, with a maximum value at the mi
plane, due to the no-slip conditions on the particle walls. T
value also depends on the width of the box, due to the p
odic boundary conditions in the horizontal.

As the particles reach the bottom of the box, they
removed. Whilst this does not reproduce experimental c
ditions exactly, it allows the simplifying assumption of
fixed length scaleH for the effective height of the cell, and i
computationally convenient. This is discussed further
Sec. V.

D. Statistics

A bulk regionB of the domain is defined as 0<y,z<L,
and 10<x<40 or 10<x<90, for H550 or 100, respec-
tively. The choice of the bulk region of flow corresponds
the region where the velocity of a single particle fallin
through the box is at least 95% of its maximum value. T
reader may find it useful to think of the bulk flow region
that where the influence of the no-slip condition on the
and bottom walls is less significant.

An overbar denotes a spatial average over the bulk reg
of a continuous function,g(x,t):

ḡ~ t !5
1

VB
E

B
g~x,t !dx, ~8!

whereVB is the volume of the bulk region.
For some particle attributes, such asg(n), say, it is more

appropriate to calculate the mean over all the particles
cated within the bulk region, this is denoted with ang
brackets:

^g~ t !&5
1

NB~ t ! (
$n:Y(n)PB%

g(n), ~9!

FIG. 1. The geometry for the suspension simulations.
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whereNB is the number of particles within the bulk region
time t.

The Dirichlet boundaries at the top and bottom of t
sedimentation cell introduce vertical inhomogeneity in t
flow. However, each horizontal plane is assumed to be
tistically homogeneous, thus it makes sense to consider h
zontally averaged statistics. The vertical profile of the lo
volume fraction is defined as

f̂~x,t !5
1

L2E (
n51

N

VpD„xÀY(n)~ t !…dydz, ~10!

where the sum is over theN particles in the domain at timet
and Vp is the volume of a particle.D is the particle distri-
bution envelope, defined in Eq.~4!. The integral is taken
over the whole horizontal plane.

Horizontally averaged profiles of vertical particle veloci
are defined as

V̂~x,t !5

1

L2E (
n51

N

V(n)D„xÀY(n)~ t !…dydz

f̂
, ~11!

where the sum is over theN particles in the domain at timet.

III. RESULTS

In Fig. 2~a! time series of the volume fraction profil
f̂(x,t) @defined in Eq.~10!# is illustrated for parameter setE.
Initially the seeding of particles is uniformly distributed i
the bulk region with a particle depleted layer next to the t
and bottom walls, since the particles may not overlap w
the walls. The small fluctuations between horizontal lev
are a consequence of the random seeding. At first, the
ume fraction profile evolves according to the classical theo
with a dense layer forming at the bottom of the cell with
smooth transition to a layer of uniform density above, whi
is matched to the initial value. Located above this is a re
tively sharp sedimentation front. However, whent/tS
530–40 a dense layer develops, just below the sedime
tion front, that has a much higher particle volume fracti
than the fluid immediately below it. This is unstable a
there is a large scale overturning of the fluid which leads t
redistribution of the particles. Byt/tS550 this leaves behind
it a stably stratified mass loading of the particles, subjec
small statistical fluctuations in density between horizon
levels. The formation of locally dense layers or overhan
occurs again, but not as strongly, later in the simulati

TABLE I. Simulation parameters.

N L/a H/a Resolution

Parameter setA 313 15.0 50.0 100324324
Parameter setB 1250 30.0 50.0 100348348
Parameter setC 5000 60.0 50.0 100396396
Parameter setD 8889 80.0 50.0 10031283128
Parameter setE 10000 60.0 100.0 199396396
3-3
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S. L. DANCE AND M. R. MAXEY PHYSICAL REVIEW E 68, 031403 ~2003!
lower down in the cell. The number of particles is lar
enough that statistical fluctuations in the density are sm
compared with the excess density in these overhangs.
suggests that convective overturning can develop, even if
initial density is uniform.

In Fig. 3 an example of a time series of the density profi
f̂(x,t), is shown forC ~whose cell height is half that ofE).
Early on a similar overturning event occurs in the cell. So
particles recirculate and temporarily stick to the contai
lid. There is some evidence that this also occurs in ot
independent simulations, e.g., Fig. 9 of Ref.@15#. In the bulk
region, a particle density concentration gradient soon de
ops, with a dense layer of particles just above the bott
wall. The gradient may be quantified by calculating the li
of best fit in the bulk region. Using this measure, the larg
gradient occurs between 20tS and 30tS . Subsequently, the
gradient decreases, but the stable stratification persist
particles settle out of the system and the bulk volume fr
tion decreases.

The volume fraction profile evolves in a similar way fo
each set of parameters with the same cell height (A,B,C,D).
An illustration comparing a snapshot of the profile for ea
set of parameters is given in Fig. 4. The solid lines repres
the function f̂(x,20tS) for one realization. The wider cel
sizes show less statistical variation from horizontal level
horizontal level, since there are a larger number of partic
in the system. The dashed lines are lines of best fit to the
in the bulk region. The gradient off with respect tox cor-
responding to this line are, for each case,A 0.0004,B 0.0012,
C 0.0024,D 0.0018.

During the course of each simulation, the number of p
ticles in the bulk region~defined in Sec. II D! decreases a
the particles settle out of the system. The initial (f0) and
final (f100) volume fractions in the bulk region are given
Table II. The initial distribution of particles is uniform
throughout the box, with the caveat that they do not over
with each other or the container walls. Thus there is a p
ticle depleted layer next to the top and bottom walls, wh

FIG. 2. A time series of the vertical profiles of the local volum

fraction f̂ for parameter setE.
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is compensated for by a slightly larger number density
particles in the bulk of the fluid. As a result, the initial vo
ume fraction in the bulk region is slightly higher than th
initial volume fraction for the whole cell. For parameter se
A, B, C, andD, after 100tS there are very few particles left in
the bulk region. For parameter setE ~the tall cell!, there are
slightly less than half of the initial number of particles left
the system. Furthermore,f100 for E is similar in value tof50
for C. The difference in volume fraction betweenC and E
after 100tS might be explained as follows. The mean settli
velocities in each case are similar~see Fig. 5 and associate
remarks below!, so particle flux rates are also similar. Thu
cell E, which is twice as tall as cellC, contains twice as
many particles as cellC at initial time, and therefore take
approximately twice as long for all the particles to settle o
Indeed, if time is scaled byH/VS , the evolution of bulk
volume fraction in casesC andE is approximately the same

The bulk mean particle velocity,^V(t)&, is defined as the
average over all the particles within the bulk region@see Eq.
~9!#. A plot of ^V(t)& is given in Fig. 5. Each symbol repre
sents a time average over 10tS , and an average over sever
realizations in the case of parameter setsA andB. The error
bars represent the statistical error as the standard deviatio
the mean@26#, and thus take into account the number
particles in each calculation.

Each set of simulation parameters gives similar bulk me
velocities as a function of time. There does not appear to
a systematic dependence of the mean velocity on the
size, consistent with theoretical expectations. The sprea
the data is comparable to the typical uncertainty reported
experiments~e.g., Nicolaiet al. @27# have an uncertainty o
60.1 for the nondimensional mean vertical velocity at vo
ume fractions of 0.05 and 0.1!.

According to the Richardson-Zaki empirical law@28#,

^V&5VS~12f!n,

with an exponent of 5, the expected initial bulk mean parti
vertical velocity is 0.53VS , corresponding tof050.12. As

FIG. 3. A time series of the vertical profiles of the local volum

fraction f̂ for parameter setC.
3-4
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FIG. 4. Comparison of local
volume fraction profiles at t

520tS : f̂(x,20tS) –; line of best
fit to data in the bulk region - -.
w
it
.

he

0
it
e
t,
ity
g
de

ea

re

lo

ig.
ns
rs

tal
ve

or
or
the number of particles in the bulk region decreased,
would expect a steady increase in velocity, culminating w
0.95VS at t5100tS and a nominal volume fraction of 0.01
For each simulation an initial velocity of a similar size to t
Richardson-Zaki prediction is indeed observed. ForA, B, C,
and D the mean velocities increase during the period
<t/tS<40, and the cells are ordered by bulk mean veloc
magnitude asA,B,C;D. This period of gradual increas
is followed by a jump in vertical velocity. After this even
the ordering of the cells by magnitude of bulk mean veloc
is reversed:D,C,B,A. The peak in bulk mean settlin
velocity is later for E. Subsequently, the mean velocities
crease, even though the volume fraction in the domain
decreasing. Similarly, Guazzelli’s experimental data@29# also
show an initial increase followed by a decrease in the m
settling velocity.

In Fig. 6 the bulk rms vertical velocity fluctuations a
plotted. Each symbol represents a time average over 10tS and
an average over several realization for experimentsA andB.
Surprisingly, there is no systematic dependence of the ve

TABLE II. Bulk region volume fraction statistics att50 andt
5100tS .

f0 f100

Parameter setA 0.124 0.006
Parameter setB 0.120 0.006
Parameter setC 0.120 0.006
Parameter setD 0.120 0.004
Parameter setE 0.119 0.049
03140
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ity fluctuations on container size. For 20tS<t<30tS , cell A
exhibits the largest relative fluctuations. Comparing with F
4 we see that cellA also has the largest density variatio
between horizontal levels at this time. A number of facto
may be relevant here.

~1! The narrow cell has fewer particles in any horizon
layer, thus individual particles or particle clusters may ha
more effect.

~2! The periodic boundary conditions mean that any up
down flow must fit within this length scale. Fewer swirls

FIG. 5. Bulk mean settling velocity vs time. Symbols:s, pa-
rameter setA; h, parameter setB; L, parameter setC; n, param-
eter setD; x, parameter setE.
3-5



th

ng

oc

n
o
is
y
al

e

ap
o
se
as
e
su

id

-

te
ta
t g

a
.
is

re

to
to

he
e
be-
vel

tely
r

e
ge
ed

- es

es
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eddies driven by local particle clustering can fit between
cell boundaries.

~3! Periodicity on this short scale may introduce lo
range correlations.

For each simulation, the relative magnitude of the vel
ity fluctuations grows initially and then decays.~An increase
towards the end of the time period, evident for experime
D andE is probably a statistical artifact, since the number
particles remaining in the bulk region is very small at th
time.! A time decay of fluctuation levels is predicted b
Luke’s theory @14#. This is also seen in some numeric
simulations@13# and experiments of Refs.@19,29#. In experi-
ments with thick cells@19#, the decay continues up to th
termination of data collection (1000tS or longer!. In thinner
cells, after an initial transient, the fluctuations decay to
uniform value.

The temporal decrease in velocity fluctuations is perh
surprising if we consider the fluctuations as a function
volume fraction. In this system the volume fraction decrea
with time as particles settle out of the cell. Thus an incre
in fluctuation levels might be expected, based on experim
tal evidence for homogeneous systems. For example, re
for a steady state fluidized bed@30# show an increase in
fluctuation levels with decrease inf.

In order to help understand these phenomena, cons
profiles of vertical particle velocity, defined by Eq.~11!. A
series of these profiles is plotted for parameter setC in Fig. 7
and parameter setE in Fig. 8. Each profile plotted is aver
aged over a period of 10tS . The zero line for each profile is
offset by an integer, for clarity. The profiles are construc
from particle data, which is distributed onto the compu
tional grid using a Gaussian envelope. The profiles do no
exactly to zero at the upper and lower walls if there is
particle~or particles! near the walls with a nonzero velocity
This happens most often at the bottom wall where there
weight of particles pressing down from above.

At first, the horizontally averaged particle velocities a

FIG. 6. Bulk mean vertical velocity fluctuations vs time. Sym
bols:s, parameter setA; h, parameter setB; L, parameter setC;
n, parameter setD; x, parameter setE.
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uniform in the bulk region, with a decay at the walls due
the boundary conditions. At early times, the flow adjusts
the distribution of particles. Towards the top of the box, t
return flow of liquid caused by the conservation of volum
constraint sweeps some particles upwards. As the flow
comes organized, the mean particle velocity on each le
again becomes positive. The velocities are approxima
uniform in the bulk region of flow, with the velocities highe
near the front.

Comparing Fig. 5 with Fig. 7 it is evident that the larg
jump in bulk mean vertical velocity corresponds to a chan
in profile character. To start with, the horizontally averag

FIG. 7. Temporally averaged particle vertical velocity profil

V̂(x,t) for parameter setC, corresponding to times 0<t<10tS ,
20tS<t<30tS , 40tS<t<50tS , 60tS<t<70tS , and 80tS<t
<90tS .

FIG. 8. Temporally averaged particle vertical velocity profil

V̂(x,t) for parameter setE, corresponding to times 0<t<10tS ,
20tS<t<30tS , 40tS<t<50tS , 60tS<t<70tS , and 80tS<t
<90tS .
3-6
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FIG. 9. A time series of the
p.d.f.s forh for parameter setC.
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particle velocity was upward at some levels, and then ther
a transition to a situation in which the horizontally averag
particle velocities are all downwards. In other words, t
initial increase in the bulk mean velocity corresponds to
reorganization of the flow and particle redistribution. Sub
quently, the bulk mean velocity decreases. This is attribu
to an increase in particle number density below the b
region, which creates a blockage effect, and slows the
ticles down. The large velocity gradient evident in the p
files towards the bottom of the box supports this conclusi

The local particle distribution is now considered, using
simple box-counting technique. The domain is divided in
small cubes of sided and the number of particles in eac
cube,h, is counted. The probability density function~p.d.f.!
of the number of particles in each cube at a given timet can
then be calculated. An example of time series for the b
region of flow withd55.0, for parameter setC, is given in
Fig. 9. The p.d.f. including the whole sedimentation cell
similar. Also, the p.d.f.s calculated withd54.0,6.0 have the
same features. Att50 the p.d.f. corresponds to a uniform
distribution of particles. Subsequently, the mean shifts to
left as fast moving clusters sediment out of the system.
the same time, the tail of the distribution becomes shor
indicating the particle number fluctuations per box are
creasing. The particles become more dispersed and the
tribution can no longer be considered uniform.

There are no experimental results available for the evo
tion of the three-dimensional distribution of particles. Ho
ever, the p.d.f. of the two-dimensional particle distributi
has been measured@31#, by counting the number of particle
in a test circle in illuminated regions of the flow, far from th
side walls. The particle distribution evolved over time. In
tially the distribution was Poisson~corresponding to uni-
formly distributed particles!, but at later times, the particl
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number fluctuations decreased. These results are qua
tively similar to those from the simulations presented her

This motivates the following tentative explanation of th
results. Initially, the particles are uniformly distributed. Ov
a short initial period, the flow organizes, resulting in a ne
particle distribution. In particular, the Stokes flow structu
encourages the formation of long-lived particle cluste
These experience less hydrodynamic drag than individ
particles, and so sediment faster. The presence of man
these clusters leads to an increase in the bulk mean set
velocity. Analogously, such local density fluctuations i
crease the velocity fluctuations in the bulk flow. As cluste
approach the bottom wall, the return flow acts to slow th
down. The subsequent build up of particles arriving fro
above creates a more dense layer. This hindered settlin
turn, feeds back into higher sections of the cell. Hence a b
stable stratification is created. There is also an associ
decay of the bulk mean velocity. Gradually, the partic
settle out of the system. Particle clusters selectively settle
faster than the mean, leaving behind a more dispersed d
bution of particles. The growth in fluctuation levels conti
ues for aboutH/2VS , the time scale for density fluctuation
to convect through half of the box. The subsequent deca
fluctuation levels is due to the increased mean interpart
spacing in the remaining particles. The bulk volume fracti
(f) decreases as the number of particles in the system
reduced. Consequently, the hindered settling phenomeno
less pronounced, allowing the concentration gradi
(df/dx) to relax.

IV. DIPOLE EFFECTS

Cichocki et al. @32# carried out study of convergence o
solutions for wall-bounded flow with multipole truncatio
3-7
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order for a classical multipole method. They found that
truncation order should be at least 2 and that there wa
further improvement by using three terms, including ad
tional terms seemed unnecessary. In this work, only
FCM-multipole term, the monopole, is employed. The use
the FCM-force dipole gives a chiefly local effect, which
most apparent for particles in shear flow@21,23#. For in-
stance, the force dipole term prevents particle deforma
during the close approach of another sphere.

The particle velocities computed with and without the
pole term for a system with parameters given in Table III
compared. Note that computations using the dipole term
quire a higher resolution grid. The tests were carried out
creating five randomly seeded arrangements of parti
within the sedimentation cell and then comparing the part
velocities computed using each method.

The results indicated that there are small quantitative
ferences for the velocities of individual particles. Figure
shows the vertical velocity distribution for each method: F
10~a! shows the computed velocity distribution using on
the monopole term and Fig. 10~b! shows the distribution in-
cluding the dipole. Using only the monopole term the dis
bution has mean 0.45 and standard deviation 0.52. The
tribution calculated using the dipole term has mean 0.40
standard deviation 0.39. Thus the p.d.f.s indicate that the

TABLE III. Parameters for the FCM-force-dipole test.

N, number of particles 1250
L/a, nondimensional width 30.0
H/a, nondimensional height 50.0
Resolution for FCM-monopole
computations

100348348

Resolution for FCM-monopole
and dipole computations

199396396
03140
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of a dipole term would make a small quantitative differen
to the results, but a qualitative change is not anticipated.

V. SUMMARY AND CONCLUSIONS

Transient settling through a cell with top and bottom wa
and periodic boundary conditions in the horizontal has b
considered. Throughout the course of the simulations
number and distribution of particles in the cell evolved, w
impacts on the bulk mean particle velocity, velocity fluctu
tions, and particle density gradient. Initially the sedimen
tion followed the classical description, with a sharp front a
uniform particle concentration below, but this was not su
tained. A layer of higher particle concentration develop
below the front. This was unstable and there was a lar
scale overturning of the fluid. As a consequence, there w
redistribution of the particles, leaving behind a mass load
of the particles that was stably stratified~subject to small
density fluctuations between horizontal levels!. The forma-
tion of locally dense layers or overhangs occurred again,
not as strongly, later in the simulation, lower down in t
cell. The mean particle velocity and fluctuations were n
constant in time, but grew whilst the flow became organiz
and then decayed for the rest of the experiment. The for
tion and differential settling of particle clusters appeared
be the key to understanding these phenomena.

In this light, we may reconsider the role of walls i
screening velocity fluctuations in suspensions. The prese
of a bottom wall enables large positive density fluctuatio
~particle clusters! to settle out, i.e., the wall acts as a sink f
fluctuations. In simulations with periodic boundary cond
tions, these inhomogeneities are reintroduced at the to
they leave the bottom of the cell. Thus periodic boundar
prevent the particle distribution from evolving as it would
an experiment.

The data obtained in experiments, such as those of S`
g
FIG. 10. P.d.f.s of the vertical velocities usin
one or two FCM-multipole terms.
3-8
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et al. and Nicolaiet al., are typically taken some time afte
the cessation of mechanical mixing and the onset of settl
in order to allow the transient effects of mixing to die awa
The simulation results would seem to indicate that in t
transient period, the distribution of particles evolves, via d
ferential settling of clusters, to a modified microstructu
where the mean interparticle spacing is less than that wo
be expected for a uniform distribution of particles. Wh
would appear to be needed now is careful experimental m
surements of the evolution of the microstructure. Unfor
nately, it is very difficult to measure the local particle dist
bution in three dimensions, although perhaps furt
measurements in two dimensions, such as those of Leiet al.
@31#, would provide insight.

A systematic dependence of particle velocity fluctuatio
on the box width was not observed. An explanatory hypo
esis is that the side walls may have a role to play in chang
the particle distribution. Typically, experimental data@6–8#
is taken in the center of the cell, where the shortest dista
from a side wall is larger than 10a. Thus, one might assum
that side wall effects should be negligible. However, the fl
around particles close to the wall is modified relative to
flow around particles in the bulk of the cell@12#. Geometrical
constraints imply that close to the walls there is a partic
depleted layer. Thus the side walls introduce horizontal
homogeneities into the system, which are not present in th
simulations. Such inhomogeneities may drive second
flows, e.g., intrinsic convection@33#. It would be interesting
to consider the results of simulations with side, top, and b
tom walls, and examine the statistics of local particle den
fluctuations across the width of the cell.

During the simulations, particles were removed from t
bottom of the container. In experiments, particles are allow
to settle and form a sediment layer on the bottom of the c
The weight of descending particles makes refluidization
the sediment layer energetically unfavorable.~Viscous resus-
pension is more likely in the context of shear flow@34#.!
Thus the effective cell height is gradually reduced, effe
tively moving the bottom boundary condition upwards.
our simulations, the initial volume fraction was 11.6%, th
allowing the particles to remain in the cell might result in
total reduction in cell height of about 15–20 % by the end
the experiment. Using the time scales from our simulatio
the average rate of growth of the sediment layer would
about 0.075VS . As noted in Sec. II, the removal of particle
allows the simplifying assumption of a fixed effective heig
as well as being computationally convenient. Particle
moval will affect the dynamics, but it is not anticipated th
this effect will be major. However, our results should
viewed in the context of the simulations actually made.

The FCM model formulation utilized only the first-orde
accurate FCM-multipole term. However, the model do
generalize to higher-order multipoles. The use of high
order terms is not expected to affect the results in a qua
tive sense~see Sec. IV!, although the quantitative values o
individual particle velocities may be slightly changed
some cases.

Even though several realizations were carried out for
small size boxes, and the large boxes contained a lot of
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ticles, it may still be the case that there are some statist
fluctuations in the data. We do not, however, believe that
trends in the data would be changed significantly by incre
ing the size of the ensemble of experiments.
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APPENDIX: CODE DESCRIPTION

We wish to solve the Stokes equations

2m¹2u1¹p5f, ~A1!

2¹•u50, ~A2!

for velocity u5(u,v,w) and pressurep in a domain (0,Lx)
3(0,Ly)3(0,Lz), subject to homogeneous Dirichlet~no-
slip! conditions on the channel walls,

u~0,y,z!5u~Lx ,y,z!50,

and periodic boundary conditions in they andz directions:

u~x,0,z!5u~x,Ly ,z! ;~x,z!P~0,Lx!3~0,Lz!,

u~x,y,0!5u~x,y,Lz! ;~x,y!P~0,Lx!3~0,Ly!.

A mixed Fourier spectral element method is used to solve
the flow. A comprehensive introduction to spectral elem
methods as applied to computational fluid dynamics is giv
by Karniadakis and Sherwin@35#.

Since the geometry is periodic in the wall-parallel dire
tions, the velocity, pressure, and forcing may be written
the Fourier series representations:

u~x,y,z!5(
k,l

û~x,k,l !ei (byky1bzlz),

p~x,y,z!5(
k,l

p̂~x,k,l !ei (byky1bzlz),

f~x,y,z!5(
k,l

f̂~x,k,l !ei (byky1bzlz),

whereby52p/Ly and bz52p/Lz . For simplicity of nota-
tion, we restrict the rest of this description to the case wh
Ly5Lz and writeb5by5bz . The algorithm is easily gen
eralized to the case ofLyÞLz , as indeed it is in the code.

In practice, this transformation is discretized by truncati
of the Fourier series. The efficient fast Fourier transfo
~FFT! can be used to carry out the transformation betwe
physical and spectral space. The Fourier series transfor
tion reduces the Stokes equations to a series of decou
problems where we treat the wave numbers as paramete
3-9
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2mS d2

dx2
2l2D û1

dp̂

dx
5 f̂ (1),

2mS d2

dx2
2l2D v̂1 ibkp̂5 f̂ (2),

2mS d2

dx2
2l2D ŵ1 ib l p̂5 f̂ (3),

2S dû

dx
1 ibkv̂1 ib lŵ D 50,

with l25b2(k21 l 2).
The equivalent weak form is as follows. Find (û,p̂) in

X3M such that

mH S dû

dx
,
df

dx
D 1l2~ û,f!J 2S p̂,

df

dx D5~ f̂ (1),f!,

mH S dv̂
dx

,
df

dx
D 1l2~ v̂,f!J 1 ibk~ p̂,f!5~ f̂ (2),f!,

mH S dŵ

dx
,
df

dx
D 1l2~ŵ,f!J 1 ib l ~ p̂,f!5~ f̂ (3),f!,

for all fPX, and

2S dû

dx
1 ibkv̂1 ib lŵ,qD 50,

for all qPM , whereX andM are chosen to be

X5H 0
1
„~0,Lx!…,

M5L 0
2
„~0,Lx!…

so that the solutions are well posed@36#. HereH 0
1
„(0,Lx)… is

the space of all functions that are square integrable
(0,Lx), whose derivatives are square integrable, and that
isfy the Dirichlet boundary conditions atx50,Lx .
L 0

2
„(0,Lx)… is the space of square integrable functions

(0,Lx) with zero average.
Following Ro”nquist @37#, these equations are discretize

using spectral elements. Due to the coupling between
v.

03140
n
t-

n

e

velocity and pressure, they may not be discretized indep
dently, to avoid spurious modes compatible subspaces m
be chosen. For a discussion of the necessary condition
compatibility see Canuto@38#. The domain (0,Lx) is split
into K equal elements, and the following subspaces that
clude parasitic modes are chosen:

Xh5H 0
1
„~0,Lx!…ùPN,K„~0,Lx!…

Mh5L 0
2
„~0,Lx!…ùPN22,K„~0,Lx!…,

wherePN22,K„(0,Lx)… is the space of polynomials of degre
less than or equal toN restricted to theK elements. The
choice of bases for these spaces corresponds to a discre
tion of the velocity usingN Gauss-Lobatto-Legendre poin
on each element and the pressure usingN22 Gauss-
Legendre points. In this way, we are able to impose the
richlet boundary conditions and preserve continuity of velo
ity between each element, but there are no bound
conditions on the pressure, and it may be discontinuous f
element to element.

The Uzawa algorithm@35,39# is used to solve for the flow
The resulting matrix vector systems are solved using prec
ditioned conjugate gradient~PCG! methods. The precondi
tioner for the pressure equation is the diagonal Gau
Legendre mass matrix~associated with the pressur
discretization!. The PCG residual corresponds to the discr
divergence of the velocity field,2Du, and thus the specified
convergence tolerance level reflects the degree to which
flow is incompressible. The spectrum of the precondition
pressure operator is analyzed by Madayet al. @39#. In our
implementation, for each given wave vector (k,l ), the PCG
pressure iteration typically converges within three iteratio
as long as the spectral element resolution is high enou
which is consistent with Madayet al. results for semiperi-
odic problems.

The solution of the velocity equations involves the inve
sion of a Helmholtz operator. This is accomplished via PC
iteration with the inverse of the diagonal of the Helmho
operator as preconditioner. This form of preconditioner
chosen since it is particularly easy to calculate. The condit
number of the operator varies with wave number. In parti
simulations, the lowest wave numbers require the most ite
tions for convergence.

Further details of the code and its validation~including
spectral convergence tests! are given by Dance@40#.
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